QCSL SLIDING LOCKS FOR SLOTTED HOLE

<table>
<thead>
<tr>
<th>Type</th>
<th>Body</th>
<th>Knob</th>
<th>Shafts / Wedge</th>
<th>Ball Plunger</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCSL-OG</td>
<td>Die-cast zinc</td>
<td>Polyamide</td>
<td>Stainless steel</td>
<td>Polyacetal</td>
</tr>
<tr>
<td>QCSL-BK</td>
<td>Chrome plated</td>
<td>Glass-fiber reinforced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCSL-S</td>
<td>SC13 stainless steel</td>
<td>(Equivalent to SUS304)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Images of QCSL-OG (Plastic Knob, Orange), QCSL-BK (Plastic Knob, Black), QCSL-S (Metal Knob)]

Locking Mechanism

The shafts are locked being pushed into the wedged spaces when sliding load is applied in horizontal direction.

<table>
<thead>
<tr>
<th>QCSL-OG (Plastic Knob, Orange)</th>
<th>QCSL-BK (Plastic Knob, Black)</th>
<th>QCSL-S (Metal Knob)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Weight (g)</td>
<td>Part Number</td>
<td>Weight (g)</td>
</tr>
<tr>
<td>QCSL1003-OG</td>
<td>80</td>
<td>QCSL1003-BK</td>
<td>80</td>
</tr>
<tr>
<td>QCSL1006-OG</td>
<td>80</td>
<td>QCSL1006-BK</td>
<td>80</td>
</tr>
</tbody>
</table>
How To Use

■ Operating Instructions

The slide is locked when the knob is at “ON” position.

■ Usage Instructions * Refer to the “Note” for safety use.

1. Slide the steel bar.
2. Attach/remove the steel bar.
3. Slide the Sliding Locks For Slotted Hole.
4. Attach/remove the Sliding Locks For Slotted Hole.

■ How to Use Scale Plate

- You can read the scale with the line on the body of Sliding Lock.
- ES1N Scale Plate is separately available.
■ Steel Bar Materials
- Usable Materials: Flat bar (JIS h14 grade) made of SS400, S45C or SUS304 etc.
- Machining of slotted hole: Recommended tolerance of the slotted hole to prevent chattering is shown as below.
 For more accurate sliding, machine the slotted hole to fit the dimension of 10mm(-0.05 to 0) on the bottom of Sliding Locks. Remove the burr around the slotted hole to ensure secure locking.

 Thickness Reference: QCSLSP "How To Use"

■ Performance Curve
The displacement of steel bar by axial load (Static load from single direction)

![Performance Curve Graph]

Note: The above data is for a flat bar made of SUS304 stainless steel, SS400 steel and S45C steel.
Using an aluminum flat bar, the surface will be scratched or dent by applied load.

■ Technical Information
- Heat resistance: Up to 90℃
- Rated load: Up to 500N

Note
The following conditions may cause displacement increasing or misalignment.
1. Use under slippage or chattering caused by vertical or horizontal loads
2. Use with a clearance between the steel bar and the base when the Sliding Locks at "ON" position.
3. Use under excess shock or vibration

![Guides Diagram]

![Supports Diagram]

![Clearance Diagram]

![Steel Plate Diagram]

![Base Diagram]
How To Use

How to Use Riser Plate

Can be used for various steel thicknesses by attaching the Riser Plates (to be ordered separately).

<table>
<thead>
<tr>
<th>Type</th>
<th>Part No. of Riser Plates</th>
<th>Thickness of Steel Bar(h14) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCSL</td>
<td>1003</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>QCSLSP1002</td>
<td>3(0.125)</td>
</tr>
<tr>
<td></td>
<td>QCSLSP1003</td>
<td>5(0.2)</td>
</tr>
<tr>
<td>QCSL</td>
<td>1006</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>QCSLSP1002</td>
<td>6(0.25)</td>
</tr>
<tr>
<td></td>
<td>QCSLSP1003</td>
<td>8(0.3)</td>
</tr>
</tbody>
</table>

Part Number	T₁	Weight (g)
QCSLSP1002 | 2 | 6
QCSLSP1003 | 3 | 10